Bayesian Analysis for Two Parameter Lomax Distribution Under Different Loss Functions

نویسندگان

چکیده

Statistical analysis via Bayesian approach is a common practice applied to draw inference about unknown parameter(s) and reliability characteristics of the probability distribution. The article include shape parameter two-parameter Lomax An attempt has been made obtain Bayes estimators by using extension Jeffrey’s prior Gamma under Entropy loss function Precautionary function. Comparison mean square error through simulation study with varying sample sizes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Estimation of Shift Point in Shape Parameter of Inverse Gaussian Distribution Under Different Loss Functions

In this paper, a Bayesian approach is proposed for shift point detection in an inverse Gaussian distribution. In this study, the mean parameter of inverse Gaussian distribution is assumed to be constant and shift points in shape parameter is considered. First the posterior distribution of shape parameter is obtained. Then the Bayes estimators are derived under a class of priors and using variou...

متن کامل

bayesian estimation of shift point in shape parameter of inverse gaussian distribution under different loss functions

in this paper, a bayesian approach is proposed for shift point detection in an inverse gaussian distribution. in this study, the mean parameter of inverse gaussian distribution is assumed to be constant and shift points in shape parameter is considered. first the posterior distribution of shape parameter is obtained. then the bayes estimators are derived under a class of priors and using variou...

متن کامل

Estimating E-Bayesian of Parameters of two parameter Exponential Distribution

‎In this study‎, ‎E-Bayesian of parameters of two parameter exponential distribution under squared error loss function is obtained‎. ‎The estimated and the efficiency of the proposed method has been compared with Bayesian estimator using Monte Carlo simulation‎. 

متن کامل

Minimax Estimation of the Parameter of ЭРланга Distribution Under Different Loss Functions

The aim of this article is to study the estimation of the parameter of ЭРланга distribution based on complete samples. The Bayes estimators of the parameter of ЭРланга distribution are obtained under three different loss functions, namely, weighted square error loss, squared log error loss and entropy loss functions by using conjugate prior inverse Gamma distribution. Then the minimax estimator...

متن کامل

E-Bayesian Approach in A Shrinkage Estimation of Parameter of Inverse Rayleigh Distribution under General Entropy Loss Function

‎Whenever approximate and initial information about the unknown parameter of a distribution is available, the shrinkage estimation method can be used to estimate it. In this paper, first the $ E $-Bayesian estimation of the parameter of inverse Rayleigh distribution under the general entropy loss function is obtained. Then, the shrinkage estimate of the inverse Rayleigh distribution parameter i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Mathematics and Applications

سال: 2022

ISSN: ['0975-8607', '0976-5905']

DOI: https://doi.org/10.26713/cma.v13i1.1679